Mathematical Modelling Of The Ventilation System Of A Residential Building In Condition That Differ From Standard
Аннотация
Полный текст:
СТАТЬЯ В ФОРМАТЕ PDF (English)Литература
Roadmap to improve and ensure good indoor ventilation in the context of COVID-19. URL: https://www.who.int/publications/i/item/9789240021280 (accessed 04.02.2021).
Lenhard, R., & Puchor, T. (2017). Mathematical Modeling of Non-isothermal Flow in Buildings. In EPJ Web of Conferences (Vol. 143, p. 02066). EDP Sciences.
Piotrowski, J. Z., Stroy, A., & Olenets, M. (2015). Mathematical Model of the Thermal-air Regime of a Ventilated Attic. Journal of Civil Engineering and Management, 21(6), 710–719.
Afroz, Z., Shafiullah, G. M., Urmee, T., & Higgins, G. (2018). Modeling Techniques Used in Building HVAC Control Systems: A Review. Renewable and Sustainable Energy Reviews, 83, 64–84.
Hwang, S. E., Chang, J. H., Oh, B. & Heo, J. (2021). Possible aerosol transmission of COVID-19 associated with an outbreak in an apartment in Seoul, South Korea, 2020. International Journal of Infectious Diseases 104, 73–76
Durrani, F., Cook, M. J., & McGuirk, J. J. (2015). Evaluation of LES and RANS CFD Modeling of Multiple Steady States in Natural Ventilation. Building and Environment, 92, 167–181.
Jing, G., Cai, W., Zhai, D., Liu, S., & Cui, C. (2018). A Model-Based Air Balancing Method of a Ventilation System. Energy and Buildings, 174, 506–512
Hens, H. L. (2015). Combined Heat, Air, Moisture Modeling: A Look Back, How, of Help? Building and Environment, 91, 138–151.
Awbi, H. B. (2003). Ventilation of Buildings. Routledge. – 536 p.
Sandberg, D.E. M. (1996). Building Ventilation. Theory and Measurement. Wiley. – 754 p.
Swanee, P. K., & Jain, A. K. (1976). Explicit Equations for Pipe Flow Problems. Journal of the Hydraulics Division, 102(5), 657–664.
Zigrang, D. J., & Sylvester, N. D. (1982). Explicit approximations to the solution of Colebrook's friction factor equation. AIChE Journal, 28(3), 514–515
Advanced water in distribution modeling and management / Haestad methods water solutions, Exton: Bentley Institute Press, 2007, 750 p.
Na, T. Y. (Ed.). (1979). Computational Methods in Engineering Boundary Value Problems (Vol. 145). Academic Press.
Todini, E., & Pilati, S. (1988, June). A Gradient Algorithm for the Analysis of Pipe Networks. In Computer Applications in Water Supply: vol. 1 — Systems Analysis and Simulation (pp. 1–20). Research Studies Press Ltd.
Todini, E. (2006, August). On the Convergence Properties of the Different Pipe Network Algorithms. In 8th Annual Water Distribution Systems Analysis Symposium (pp. 1–16).
Elhay, S., & Simpson, A. R. (2011). Dealing with Zero Flows in Solving the Nonlinear Equations for Water Distribution Systems. Journal of Hydraulic Engineering, 137(10), 1216–1224.
Elhay, S., & Simpson, A. R. (2012). Closure to «Dealing with Zero Flows in Solving the Nonlinear Equations for Water Distribution Systems» by Sylvan Elhay and Angus R. Simpson. Journal of Hydraulic Engineering, 139(5), 560–562.
Gorev, N. B., & Kodzhespirova, I. F. (2013). Discussion of «Dealing with Zero Flows in Solving the Nonlinear Equations for Water Distribution Systems» by Sylvan Elhay and Angus R. Simpson. Journal of Hydraulic Engineering, 139(5), 558–560.
Simpson, A., & Elhay, S. (2011). Jacobian Matrix for Solving Water Distribution System Equations with the Darcy-Weisbach Head-loss Model. Journal of Hydraulic Engineering, 137(6), 696–700.
Rossman, L. A., Boulos, P. F., & Altman, T. (1993). Discrete Volume-element Method for Network Water-quality Models. Journal of Water Resources Planning and Management, 119(5), 505–517.
Rossman, L. A. (2000). EPANET 2: Users Manual.
Nekrasov, A. V. (2020) Modeling of the ventilation systems using the software Epanet. Russian Journal of Construction Science and Technology. 1(6), 5-9.
Ссылки
- На текущий момент ссылки отсутствуют.
(c) 2023 Alexandr Nekrasov