EVALUATING DEGREE OF COMPACTION OF LEVEES USING CONE PENETRATION TESTING

Diego Lo Presti, Andrea Angina, Andrea Steri

Аннотация


Permeability and strength parameters of compacted soils (i.e. levees as well as other earthworks) may be correlated to the degree of compaction. Since the use of conventional and recent testing methods for the assessment of density and water content of earthworks, under construction, cannot be applied to existing levees, an expeditious and accurate method for the assessment of the degree of compaction of existing and new levees, after their completion, appears extremely useful. The purpose of this research is to develop a simple tool for the assessment of the degree of compaction of “compacted”, partially saturated, fine grained soils. This paper illustrates the proposed method which combines in situ testing like electric CPT or CPTu with laboratory penetration testing performed with a mini–cone in a calibration chamber (CC).

Полный текст:

Статья в формате PDF

Литература


AASHTO M 145 1991. (R1995) (R2000). Standard Specification for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes. - HM-22: PART IA.

ABEDIN, M.Z. (1995). The characterization of unsaturated soil behaviour from penetrometer performance and the critical state concept. Department of Civil Engineering and Geosciences. Newcastle University, Tyne and Wear, United Kingdom.

AFNOR (1997) XP P 94-063. Controle de la qualité du compactage-methode au penetrometre dynamique a energie constante.

AFNOR (2000) XP P 94-105. Controle de la qualité du compactage-methode au penetrometre dynamique a energie variable.

ARROYO, M., BUTLANSKA, J., GENS, A., CALVETTI, F. AND JAMIOLKOWSKI, M. (2011). Cone penetration tests in a virtual calibration chamber. Géotechnique 61, No. 6, 525–531 [doi: 10.1680/geot.9.P.067]

ASTM D2167-15, Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method, ASTM International, West Conshohocken, PA, 2015

ASTM D1556 / D1556M-15e1, Standard Test Method for Density and Unit Weight of Soil in Place by Sand-Cone Method, ASTM International, West Conshohocken, PA, 2015

ASTM D6780 / D6780M-12, Standard Test Method for Water Content and Density of Soil In situ by Time Domain Reflectometry (TDR), ASTM International, West Conshohocken, PA, 2012

ASTM D6938-15, Standard Test Methods for In-Place Density and Water Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth), ASTM International, West Conshohocken, PA, 2015

ASTM D698-12e1. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International, West Conshohocken, PA, 2012

ASTM D1557-12. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)). ASTM International, West Conshohocken, PA, 2012.

ASTM D4318-10e1. Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, West Conshohocken, PA, 2010.

BALDI, G., BELLOTTI, R., GHIONNA, V., JAMIOLKOWSKI, M. & PASQUALINI, E. (1986). Interpretation of CPT's and CPTU's. 2nd Part: Drained Penetration. Proceeding 4th International Geotechnical Seminar, Singapore, 143-156.

BALDI, G., O'NEILL, D.A. (1995). Developments in penetration technology for geotechnical and environmental applications. International Symposium on Cone Penetration Testing, Linkoping, Sweden.

BALDUCCI, M. (2015). Esecuzione ed analisi di prove CPT in mini-camera di calibrazione: terreni a grana fine parzialmente saturi. B. Thesis. D.E.S.T.eC. – School of Engineering, University of Pisa. In Italian.

BELLOTTI, R., BIZZI, G., GHIONNA, V. (1982). Design, construction and use of a calibration chamber. Proceedings of the Second European Symposium on Penetration Testing (ESOPT II). Amsterdam, 24-27 May, 1982.

BEMBEN, S.M. AND MYERS, H.J. (1974). The influence of rate of penetration on static cone resistance in Connecticut river valley varved clay. Proceedings of the European Symposium on Penetration Testing, ESOPT, Stockholm, 2.2, 33-34.

BOLTON, M., GUI, M., GARNIER, J., CORTE, J., BAGGE, G., LAUE, J., RENZI, R. (1999). Centrifuge cone penetration tests in sand. Géotechnique 49 (4). 543-552.

BUNONE, G. (2012). Influenza dello stato tensionale sulla resistenza penetrometrica. B Sc. Thesis - Department of Civil Engineering - University of Pisa. In Italian.

CAMPANELLA R.G AND KOKAN M. J. (1993) – A New Approach to Measuring Dilatancy in Saturated Sands. Geotechnical testing Journal, ASTM, 16(4): 485-495

CARELLI, I. (2009). Metodi di controllo tradizionali ed innovativi di costruzioni in materiali sciolti. B. Sc. Thesis - Department of Civil Engineering - University of Pisa. In Italian.

CELOTTI, F. (2013). Esecuzione ed analisi di prove CPT in mini – camera di calibrazione. B. Sc. Thesis. D.E.S.T.eC. – School of Engineering, University of Pisa. In Italian.

CHAPMAN, G.A. (1974). A Calibration Chamber for Field Test Equipment. ESOPT, Vol. 2.2, Stockolm.

CHUNG, S.F., RANDOLPH, M.F. AND SCHNEIDER, J.A. (2006). Effect of Penetration Rate on Penetrometer Resistance in Clay. J. Geotech. Geoenviron. Eng. 2006.132:1188-1196

CLAYTON, C.R., MILITITSKY J., WOODS R.I. (2006) Spinta delle terre e le opere di sostegno Edizioni Hevelius Benevento, 442 pp.

COMACCHI, S. (2013). Esecuzione ed analisi di prove CPT in mini camera di calibrazione. B. Sc. Thesis. D.E.S.T.eC. – School of Engineering, University of Pisa. In Italian.

COSANTI, B. (2014). Guidelines for the geotechnical design, upgrading and rehabilitation of river embankments. PhD Thesis. Doctoral School of Engineering “Leonardo da Vinci”. University of Pisa. Italy.

COSANTI, B.; SQUEGLIA, N.; LO PRESTI, DCF (2013). Geotechnical Characterization of the Flood Plain Embankments of the Serchio River (Tuscany, Italy). 7th International Conference on Case Histories in Geotechnical Engineering and Symposium in Honor of Clyde Baker. April 29-May 4, 2013. CHICAGO, IL.

COSANTI B., SQUEGLIA N., LO PRESTI D. (2014) Analysis of existing levee systems: the Serchio river case, Rivista Italiana di Geotecnica. 4/14, pp: 47 - 65

DE LIMA, D.C., (1990). Development, fabrication and verification of the LSU in situ testing calibration chamber (LSU/CALCHAS). Louisiana State University, Baton Rouge, LA, p. 304.

DI MARTINO, L. (2012). Analisi delle prove penetrometriche statiche in camera di calibrazione. B. Sc. Thesis - Department of Civil Engineering - University of Pisa. In Italian.

FILLANTI, L. (2013). Esecuzione ed analisi di prove CPT in mini - camera di calibrazione. B. Sc. Thesis. D.E.S.T.eC. – School of Engineering, University of Pisa. In Italian.

FIORAVANTE V, JAMIOLKOWSKI M., TANIZAWA F. E TATSUOKA F. (1991). Results of CPT’s in Toyoura Quartz Sand. Proceedings of the First International Symposium on Calibration Chamber Testing – ISOCCT1, Postdam, New York/ 28-29 June 1991 pp 135-145. Elsevier New York.

FRANZEN, J.H. (2006). Cone penetration resistance in silt. Department of Civil & Environmental Engineering. University of Rhole Island, Kingston, RI.

GARIZIO, G.M. (1997). Determinazione dei parametri geotecnici e in particolare di K0 da prove penetrometriche M.Sc. Thesis Department of Structural Engineering, Politecnico di Torino. In Italian.

GERVASI, G. (2010). Uso della prova penetrometrica (CPT) per la verifica del grado di costipamento dei rilevati. B. Sc. Thesis - Department of Civil Engineering - University of Pisa. In Italian.

GHIONNA, V., JIAMIOLKOWSKI, M. (1991). A critical appraisal of calibration chamber testing of sands. Proceedings of the First International Symposium on Calibration Chamber Testing (ISOCCT1), An-Bin Huang, Ed., Potsdam, New York. DTIC Document, 13–40.

GOBBI, S. (2015). Utilizzo di un metodo innovativo per la verifica del grado di compattazione di opere geotecniche in materiali fini mediante prova CPT. B. Sc. Thesis. D.E.S.T.eC. – School of Engineering, University of Pisa. In Italian.

GONNELLA, M. (2014). Esecuzione ed analisi di prove CPT in mini - camera di calibrazione. B. Sc. Thesis. D.E.S.T.eC. – School of Engineering, University of Pisa. In Italian.

DE GRAAF H. C. VAN AND ZUIDBERG H. M. (1985) – Field Investigations. The Netherlands Commemorative Vol. XI ICSMFE 1985. 29-52

HUANG, A.B., HSU, H.H. (2005). Cone penetration tests under simulated field conditions. Geotechnique, 55, 345-354.

HSU, H.H., HUANG, A.B. (1998). Development of an axisymmetric field simulator for cone penetration tests in sand. ASTM Geotechnical Testing Journal, 21, (4), 348-355.

JAMIOLKOWSKI, M., GHIONNA, V.N., LANCELLOTTA, R. & PASQUALINI, E. (1988). New correlations of penetration tests for design practice. Proc., Penetration Testing 1988, ISOPT 1, Orlando, Florida, J. De Ruiter ed., Vol. 1 pp: 263-296

JAMIOLKOWSKI, M., LO PRESTI, D.C.F. & GARIZIO, G.M. (2000). Correlation between Relative Density and Cone Resistance for Silica Sands. 75th Anniversary of Karl Terzagni’s ERDBAU

JAMIOLKOWSKI, M., LO PRESTI, D.C.F. & MANASSERO, M. (2001). Evaluation of Relative Density and Shear Strength of Sands from CPT and DMT, Invited Lecture Ladd Symposium, GSP No. 119, ASCE, pp. 201-238.

KOKUSHO, T., ITO, F., NAGAO, Y., GREEN, R.A., (2012). Influence of non/low-plastic fines and associated aging effects on liquefaction resistance. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 138, 747-745.

KUMAR, J., RAJU, K.V.S.B., (2008). Correlation between miniature cone tip resistance and shear strength parameters of clean and silty sand using a conventional triaxial setup. Geotechnical Testing Journal, 31, 206-216.

LÖFROTH, H. (2008). Undrained shear strength in clay slopes – Influence of stress conditions. A model and field test study. Department of Civil and Environmental Engineering. Chalmers University of Technology, Gothenburg, 195.

LO PRESTI D. (1987) Comportamento della Sabbia del Ticino in Prove di Colonna Risonante Ph. D. Thesis, Politecnico di Torino, 1987, 252 pp, allegati 150 pp.

LO PRESTI D. & SQUEGLIA N. (2008), Effect of laboratory sample-reconstitution method on the stiffness, strength parameters and envelope of cement-mixed silts. Atlanta 4th International Symposium on Deformation Characteristics of Geomaterials. Vol. 1, pp: 319 – 326

LUNNE, T., ROBERTSON, P.K. AND POWELL, J.J.M. (1997). Cone Penetration Testing in Geotechnical Practice. EF Spon/Blackie Academic, Routledge Publishers, London, 312 p.

MAYNE, P. W., KULHAWY, F. H. (1991). Calibration chamber database and boundary effects correction for CPT data. In Calibration chamber Testing. New York: Elsevier, pp. 257-264.

MARCHETTI, S. AND CRAPPS, D.K. (1981) Flat Dilatometer Manual. Internal Report of G.P.E. Inc

MAGNANIMO, F. (2011). Sviluppo di una mini – camera di calibrazione per prove prototipo CPT. B. Sc. Thesis - Department of Civil Engineering - University of Pisa. In Italian.

MORIANI, G. (2015). Dipendenza della resistenza alla punta delle prove CPT dal grado d'umidità. B. Sc. Thesis. D.E.S.T.eC. – School of Engineering, University of Pisa. In Italian.

NICASTRO, D. (2015). L'influenza dello stato tensionale sulla resistenza penetrometrica nei terreni a grana fine parzialmente saturi. B. Sc. Thesis. D.E.S.T.eC. – School of Engineering, University of Pisa. In Italian.

NIEUWENHUIS J. K. & SMITS F. P. (1982) – The Development of a Nuclear Density Probe in a Cone Penetrometer. Proc. ESOPT II, Balkema 2: 745-749

PAGLIONE, L. (2015). Influenza del contenuto d'acqua sulla resistenza a penetrazione dei terreni a grana fine. B. Sc. Thesis. D.E.S.T.eC. – School of Engineering, University of Pisa. In Italian.

PARKIN, A., LUNNE, T. (1982). Boundary effects in the laboratory calibration of a cone penetrometer for sand. Norwegian Geotechnical Institute Publication (138).

PARKIN, A.K. (1988). The calibration of cone penetrometers. De Ruiter (Ed.). Proceedings of the First International Symposium on Penetration Testing, ISOPT-1, Balkema, Rotterdam, The Netherlands, Orlando, Florida, 221-243.

PAZZINI M. (2015) Valutazione dell’effetto del tempo e dell’umidità sulla resistenza penetro metrica B. Sc. Thesis. D.E.S.T.eC. – School of Engineering, University of Pisa. In Italian.

POURNAGHIAZAR, M., RUSSELL, A.R., KHALILI, N. (2012). Linking cone penetration resistances measured in calibration chambers and the field. Géotechnique Letters, 2 (April-June), 29-35.

ROY, M., TREMBLAY, M., TAVENAS, F. & ROCHELLE, P. L. (1982). “Development of pore pressure in quasi-static penetration tests in sensitive clay”, Canadian Geotechnical Journal, 19 (1), 124-138.

SALGADO, R. (2013). The mechanics of cone penetration: contributions from experimental and theoretical studies. In: Coutinho, R.Q., Mayne, P.W. (Eds.), Geotechnical and Geophysical Site Characterization 4, ISC4. CRC Press, Boca Raton, FL, USA, 131-153.

SETRA – LCPC. 1994. Remblelayage des tranchées et réfection des chaussées – Guide Technique. Setra/LCPC, réf. D9441

SETRA – LCPC. 2007. Remblelayage des tranchées et réfection des chaussées – Compléments. Setra/LCPC, no. 117.

SCHMERTMANN, J.H., (1972). Effects of In Situ Lateral Stress on Friction Cone Penetrometer Data in Sands. Fugro Sondeer Symposium (published by Fugro – Cesco, Holland.

SCHMERTMANN, J.H., (1978). Guidelines for cone penetration test: performance and design. Federal Highway Administration, Washington, D.C.

SQUEGLIA, N, COSANTI, B, LO PRESTI, DCF (2013). Stability Analysis of the Serchio River Flood Plain Embankments (Tuscany, Italy). 7th International Conference on Case Histories in Geotechnical Engineering and Symposium in Honor of Clyde Baker. April 29-May 4, 2013. CHICAGO, IL.

TANIZAWA F. 1992. Correlations between cone resistance and mechanical properties of uniform clean sand, Internal Report ENEL – CRIS, Milan.

TATSUOKA, F. (2011). Laboratory stress-strain tests for the development of geotechnical theories and practice. Bishop Lecture, Proc. 5th International Conference on Deformation Characteristics of Geomaterials, Seoul, Korea, Sept., 3-50.

TATSUOKA, F. (2015) - Compaction Characteristics and Physical Properties of Compacted Soils Controlled by the Degree of Saturation Proc. Of the Sixth International Symposium on Deformation Characteristics of Geomaterials. IS Buenos Aires 15-18 November 2015

TJELTA T. I. TIEGES A.W.W., SMITS F.P., GEISE J.M., LUNNE T. (1985) – In-Situ Density Measurements by Nuclear Backscatter for an Offshore Soil Investigation. Proc. Offshore Technology Conference, Richardson Texas, Paper No 40917

VEISMANIS, A. (1974). Laboratory Investigation of Electrical Friction – Cone Penetrometers in Sands. Proceedings of the European Symposium on Penetration Testing (ESOPT), Vol. 2, 407-419.

VUODO, C.A. (2009). Uso delle prove CPT per il controllo della qualità dei rilevati B. Sc. Thesis - Department of Civil Engineering - University of Pisa. In Italian.

WHITTLE, A. J., SUTABUTR, T., GERMAINE, J. T. & VARNEY, A. (2001). Prediction and interpretation of pore pressure dissipation for a tapered piezoprobe. Géotechnique 51, No. 7, 601-617.


Ссылки

  • На текущий момент ссылки отсутствуют.


(c) 2018 Russian Journal of Construction Science and Technology